1 Approximation de $\sqrt{3}$: Suite dé Héron d'Alexandrie

1. f est dérivable sur $[0; +\infty[$ comme somme de fonctions dérivables.

Pour tout
$$x > 0$$
, $f'(x) = \frac{1}{2} \left(1 + 3 \times \left(-\frac{1}{x^2} \right) \right) = \frac{1}{2} \left(1 - \frac{3}{x^2} \right) = \frac{1}{2} \left(\frac{x^2 - 3}{x^2} \right)$.

$$f'(x) = 0$$
 pour $x = \sqrt{3}$.

 $x^2 - 3 \le 0$ pour $0 < x \le \sqrt{3}$ et $x^2 - 3 \ge 0$ pour $x \ge \sqrt{3}$. Le dénominateur x^2 est positif.

Donc f est décroissante sur]0; $\sqrt{3}]$ puis décroissante sur $[\sqrt{3}; +\infty[$.

Calcul des limites aux bornes (voir chapitre 2) :

$$\lim_{x\to 0^+} \left(\frac{3}{x}\right) = +\infty \text{ donc } \lim_{x\to 0^+} f(x) = +\infty \text{ et } \lim_{x\to +\infty} \left(\frac{3}{x}\right) = 0 \text{ donc } \lim_{x\to +\infty} f(x) = +\infty.$$

On en déduit le tableau de variation :

x	0		$\sqrt{3}$		$+\infty$
f'(x)		_	0	+	
f(x)	$+\infty$		$\sqrt{3}$	/	$+\infty$

- 2. Montrons par récurrence sur n que, pour tout entier naturel $n, u_n > \sqrt{3}$.
 - (a) Initialisation : $u_0 = 5 > \sqrt{3}$ donc la propriété est vraie pour n = 0.
 - (b) On suppose la propriété vraie pour un rang n quelconque, donc $u_n > \sqrt{3}$. D'après la question précédente, f est croissante sur $\left[\sqrt{3} ; +\infty\right[, \text{donc } \sqrt{3} < u_n \Rightarrow f\left(\sqrt{3}\right) < f\left(u_n\right)$. Or $f(\sqrt{3}) = \sqrt{3}$ et $f(u_n) = u_{n+1}$ donc $u_{n+1} > \sqrt{3}$ La propriété est héréditaire
 - (c) D'après l'axiome de récurrence, la propriété est vraie pour tout entier naturel n: Pour tout $n \in \mathbb{N}, u_n > \sqrt{3}$.
- 3. Montrons par récurrence que la suite (u_n) est décroissante, c'est-à-dire que $u_{n+1} u_n \leqslant 0$ pour tout $n \in \mathbb{N}$.

Méthode 1 : Recherche du signe de $u_{n+1} - u_n$

Soit n un entier naturel:

$$u_{n+1} - u_n = \frac{1}{2} \left(\left(u_n + \frac{3}{u_n} \right) - u_n \right)$$

On réduit au même dénominateur!!!

$$u_{n+1} - u_n = \frac{1}{2}(\frac{3}{u_n} - u_n) = \frac{1}{2} \times \frac{3 - u_n^2}{u_n}$$

Or
$$u_n > \sqrt{3}$$
 d'après la question 2) donc $3 - u_n^2 < 0$ d'où $\left\lceil \frac{3 - u_n^2}{u_n} \right\rceil < 0$.

Conclusion : Pour tout $n \in \mathbb{N}$, $u_{n+1} - u_n < 0$ donc la suite u est décroissante.

Méthode 2 : Par récurrence

- (a) Initialisation : $u_1 = \frac{1}{2} \left(5 \frac{3}{5} \right) = \frac{22}{10} = \frac{11}{5} < 5 \text{ donc } u_1 u_0 < 0.$
- (b) Hérédité : on suppose $u_{n+1}-u_n\leqslant 0$ pour un rang n quelconque. Par conséquent : $\sqrt{3}\leqslant u_{n+1}\leqslant u_n$. f est croissante sur $\left[\sqrt{3}\;;\;+\infty\right[$ donc $f(\sqrt{3})\leqslant f\left(u_{n+1}\right)\leqslant f\left(u_n\right),$ c'est-à-dire $\sqrt{3}\leqslant u_{n+2}\leqslant u_{n+1}$ donc $\sqrt{3}\leqslant u_{n+2}\leqslant u_{n+1}.$ La propriété est héréditaire.
- (c) D'après l'axiome de récurrence, la propriété est vraie pour tout entier naturel n: la suite u est décroissante.
- 4. La suite est décroissante et minorée par $\sqrt{3}$, donc elle converge vers un réel $\ell \geqslant \sqrt{3}$.
- 5. f est continue, donc ℓ est solution de l'équation f(x) = x.

$$f(x) = x \Leftrightarrow \frac{1}{2} \left(x + \frac{3}{x} \right) = x \Leftrightarrow \frac{x^2 + 3}{2x} = x \Leftrightarrow x^2 + 3 = 2x^2 \Leftrightarrow x^2 = \sqrt{3} \text{ qui a pour solutions } -\sqrt{3} \text{ et } \sqrt{3}.$$
 La limite est positive, donc $\ell = \sqrt{3}$.

- 6. Pour un autre nombre initial $u_0 \in]\sqrt{3}$; $+\infty[$, la suite converge toujours vers $\sqrt{3}$.
- 7. Pour $u_0 = \sqrt{3}$, la suite est constante et vaut $\sqrt{3}$, car $u_1 = f(\sqrt{3}) = \sqrt{3}$ et par récurrence, on montrerait facilement que tous les termes sont égaux à $\sqrt{3}$ (évident!).
- 8. Si $u_0 \in]0$; $\sqrt{3}[$, on a $u_1 = f(u_0) > \sqrt{3}$ (d'après le tableau de variation de f) et l'on est ramené à la situation du début de l'exercice, à partir de n = 1, donc la suite converge encore vers $\sqrt{3}$.

9. Algorithme possible:

8			
Variables	u, p, n		
Affectations	n = 0		
	choisir u		
	choisir p		
	Tant que $ u - \sqrt{3} > 10^{-p}$		
	$u = \frac{1}{2} \left(u + \frac{3}{u} \right)$		
	n = n + 1		
Sortie	Afficher n		

2 Non convergence de la suite $(\sin(n))$

- 1. On a : $\cos 1 \approx 0.54$ et $\sin 1 \approx 0.84$
- 2. (a) Pour tous a et b, $\sin(a+b) = \cos a \sin b + \sin a \cos b \operatorname{donc} \left[\frac{\sin(n+1) = \cos(1)\sin(n) + \cos(n)\sin(1)}{\sin(n) + \cos(n)\sin(1)} \right].$
 - (b) $\sin(n+1) \sin(n-1) = \cos(1)\sin(n) + \cos(n)\sin(1) [\cos(1)\sin(n) \cos(n)\sin(1)] = 2\sin(1)\cos(n)$
- 3. On pose pour tout $n \in \mathbb{N}$, $u_n = \sin(n)$ et $v_n = \cos(n)$. On suppose désormais que (u_n) a une limite finie ℓ .
 - (a) i. $\lim_{n \to +\infty} \sin(n+1) = \ell$ et $\lim_{n \to +\infty} \sin(n-1) = \ell$ donc $\lim_{n \to +\infty} [\sin(n+1) + \sin(n-1)] = \ell \ell = 0$.
 - ii. Pour tout n, $\sin(n+1) \sin(n-1) = 2\sin(1)\cos(n)$, donc $\lim_{n\to+\infty} (2\sin 1\cos n) = 0$. Comme $\sin 1 \neq 0$, on a $\lim_{n\to+\infty} \cos n = 0$.
 - (b) $\sin(n+1) = \cos(1)\sin(n) + \cos(n)\sin(1)$ (1.(a)) donc $\lim_{n \to +\infty} [\cos(1)\sin(n) + \cos(n)\sin(1)] = \boxed{\ell \cos 1}$ car $\lim_{n \to +\infty} \cos n = 0$.

 Or $\boxed{\lim_{n \to +\infty} \sin(n+1) = \ell}$

Par unicité de la limite, on a $\ell = \ell \cos 1$, d'où $\ell(1 - \cos 1) = 0$; comme $\cos 1 \neq 1$, on a $\ell = 0$ Par conséquent : $\lim_{n \to +\infty} u_n = \ell = 0$ et $\lim_{n \to +\infty} v_n = 0$

- (c) Pour tout n, $u_n^2 + v_n^2 = \sin^2 n + \cos^2 n = 1$ donc $\lim_{n \to +\infty} (u_n^2 + v_n^2) = 1$ et $\lim_{n \to +\infty} (u_n^2 + v_n^2) = 0 + 0 = 0$ donc 1 = 0, ce qui est faux.
- (d) On en déduit que l'hypothèse $\lim_{n\to+\infty}u_n=\ell$ est fausse : La suite $(\sin n)$ n'a donc pas de limite.